Numerical quadrature for the Prandtl Meyer function at high temperature with application for air
نویسنده
چکیده
When the stagnation temperature of the combustion chamber or ambient air increases, the specific heats and their ratio do not remain constant any more, and start to vary with this temperature. The gas remains perfect, except, it will be calorically imperfect and thermally perfect. A new generalized form of the Prandtl Meyer function is developed, by adding the effect of variation of this temperature, lower than the threshold of dissociation. The new relation is presented in the form of integral of a complex analytical function, having an infinite derivative at the critical temperature. A robust numerical integration quadrature is presented in this context. The classical form of the Prandtl Meyer function of a perfect gas becomes a particular case of the developed form. The comparison is made with the perfect gas model for aim to present a limit of its application. The application is for air. Résumé – Lorsque la température de stagnation de la chambre de combustion ou de l’air ambiant augmente, la chaleur spécifique et de leur rapport ne reste pas plus constant, et commence à varier avec cette température. Le gaz reste parfait, à l'exception, il sera imparfait en calories et parfait thermiquement. Une nouvelle forme générale de la fonction de Prandtl Meyer est développée, en ajoutant l'effet de variation de cette température, qui est basse au seuil de dissociation. La nouvelle relation est présentée sous la forme d'une intégrale d'une fonction analytique complexe, et ayant une dérivée infinie à la température critique. Une intégration quadratique numérique robuste est présentée dans ce contexte. La forme classique de la fonction de Prandtl Meyer d'un gaz parfait devient un cas particulier de la forme développée. La comparaison est faite avec le modèle d’un gaz parfait ayant pour but de présenter une limite de son application. L'application est l'air.
منابع مشابه
Transient Natural Convection Flow on an Isothermal Vertical Wall at High Prandtl Numbers: Second-Order Approximation
The method of matched asymptotic expansions, which has been used in previous studies of steady natural convection flow, is extended here to transient natural convection flow at high Prandtl number (Pr). Second-order expansion solutions, valid for large Prandtl numbers, are presented for the transient natural convection flow near a vertical surface which undergoes a step change in temperature. T...
متن کاملExperimental study and application of computational fluid dynamics on the prediction of air velocity and temperature in a ventilated chamber
The shape of the air flow in the interior is heavily influenced by the air distribution system and the way air enters and exits. By numerically simulating flow by computational fluid dynamics, one can determine the flow pattern and temperature distribution and, with the help of the results, provide an optimal design of the air conditioning system. In this study, a chamber was first constructed ...
متن کاملDifferential Quadrature Method for the Analysis of Hydrodynamic Thrust Bearings
This paper presents the application of the method of generalized differential quadrature (GDQ) for the analysis of hydrodynamic thrust bearings. GDQ is a simple, efficient, high-order numerical technique and it uses the information on all grid points to approach the derivatives of the unknown function. The effectiveness of the solution technique is verified by comparing the GDQ computed results...
متن کاملHigh order quadrature based iterative method for approximating the solution of nonlinear equations
In this paper, weight function and composition technique is utilized to speeds up the convergence order and increase the efficiency of an existing quadrature based iterative method. This results in the proposition of its improved form from a two-point quadrature based method of convergence order ρ = 3 with efficiency index EI = 1:3161 to a three-point method of convergence order ρ = 8 with EI =...
متن کاملApplication of CAS wavelet to construct quadrature rules for numerical integration
In this paper, based on CAS wavelets we present quadrature rules for numerical solution of double and triple integrals with variable limits of integration. To construct new method, first, we approximate the unknown function by CAS wavelets. Then by using suitable collocation points, we obtain the CAS wavelet coefficients that these coefficients are applied in approximating the unk...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Meth. in Science and Engineering
دوره 10 شماره
صفحات -
تاریخ انتشار 2010